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1 Introduction 

The Hard Disk Drive is the most common device used for data storage. The introduction 

of Perpendicular recording provides an increasing of hard disk user data density. The di-

rect consequence is the increasing complexity of the hard disk drive read/write channel 

logic: in particular also the operation of track seek and track following must be more ac-

curate in respect of new media specs. In fact each Hard Disk Drive read/write system 

needs a control logic for the head positioning to identify the correct user data sector that 

has to be read or written. These positioning operations are controlled by the Servo Sub-

system that is part of the Hard Disk Drive R/W channel. Servo Subsystem realizes the 

correct head positioning on the track decoding servo sectors (track servo data are record-

ed along the tracks).  

Servo Subsystem is usually implemented with an hardwired approach: a Finite State Ma-

chine. The presence of different Hard Disk Drive Market Segments, characterized by var-

ious kinds of media supports, with the necessity of peculiar Read/Write channel systems, 

needs different Servo sectors and consequently different Servo subsystem. The Finite 

State Machine approach reaches the best performance, but loses in terms of flexibility, 

since the behavior of the Servo subsystem couldn’t be modified after Integrated Cir-

cuit (IC) fabrication if some changes of the design are needed: the hardwired Finite State 

Machine implementation, and so its behavior, cannot be modified. 

The proposed ASIP, the Micro-programmed Servo Sequencer (MSS), maintains the same 

behavioral characteristics of the Servo Subsystem considering also same performances in 

terms of Servo System elaborating frequency, adding an important feature: its flexibility. 

The MSS Instruction Set Architecture (ISA) has been customized to emulate a generic 

Servo System behavior and takes into consideration different Hard Disk Drive market 

segments. The ISA contains all the fundamental instructions for the correct description of 

the Servo System behavior. The simple ASIP architecture and some embedded operations 

allow the achievement of the appropriate performance, needed to implement also the most 
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critical control systems. The Microprogrammed Servo Sequencer flexibility characteristic 

concerns two aspects. The first one involves the parametric feature of the RTL source 

code that describes Microprogrammed Servo Sequencer: it is possible to dimension all In-

struction Set fields (except the operating code that identify instruction type) to fit differ-

ent Servo system features. The second aspect involves the reprogramming feature of the 

MSS Instruction Memory, MSS Register Memory and MSS Reconfigurable I/O ports: the 

reprogramming process allows initializing the MSS behavior with the appropriate firm-

ware according to the HDD market segment, so it is possible to make changes of this be-

havior after IC fabrication reprogramming the microcontroller with a specific firmware, 

thus reducing design costs of different Servo System. 

This work proposes a complete front end design for the description of Servo System. 

 

In Chapter 2 the Servo System operations are explained and the hardwired approach is 

compared with the programmable one. 

In Chapter 3 the Microprogrammed Servo Sequencer is presented: it is composed by an 

elaborating core, embedded counters, programmable I/O ports and a Reprogramming Fi-

nite State Machine; the MSS instruction set is described and custom instructions, such as 

COUNTER one, are explained in details.  

Chapter 4 begins with an introduction to the verification process, then Assertion Based 

Verification explanation and an example of this verification applied to JUMPCS instruc-

tion are shown. 

In Chapter 5 the Microprogrammed Servo Sequencer is customized on a real case of Ser-

vo System. A dedicated firmware has been written, the MSS has been reprogrammed, its 

correct behavior has been verified and synthesis results are compared with real Servo 

System. 
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2 Hard Disk Drive Servo operations 

 
 

ach Hard Disk Drive (HDD) needs a control logic, that realizes 

the heads alignment, for the correct user data reading or writ-

ing. This logic is called Servo Subsystem and it is realized by 

means of a hardwired Finite State Machine. The Application Specific 

Instruction-set Processor (ASIP) programmable approach is an alter-

native implementation for reducing the non-recurring design, verifi-

cation, layout and test costs: it is possible to map different genera-

tions of Servo FSM onto the same ASIP. 

E
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2.1 The Hard Disk Drive 

The Hard Disk Drive (HDD) is a mass storage device formed by a spindle which holds 

one or more flat circular disks called platters, made from a non-magnetic material (for ex-

ample glass or aluminum alloy) and coated with a ferromagnetic layer on which user data 

are recorded by means of a magnetization operation (Figure 2.1.1). 

 

 

Figure 2.1.1  Hard Disk Drive 

 

The platters are spun at high speed and different heads, moved by means of a mechanic 

arm over the track that has to be read/written, realize the data read and write operations 

reading or modifying the magnetization of the ferromagnetic material. Each platter is or-

ganized in tracks, concentric rings, separated by interspaces called gaps. Each track is or-

ganized in many sectors that generally contain 512 bytes each and are separated by spaces 

called intersector gaps. Due to the Hard Disk geometry the more external tracks contain 

more sectors than the more internal ones. The read and write operations are realized mov-

ing the heads over the correct track; thanks to the disk rotation it is possible to read or 

write the desired sector. Each platter needs two heads for reading and writing process. 

The correct head alignment over the correct track is achieved by means of servo informa-

tion reading [2.1], [2.2]. 

 

2.2  Servo data and operations 

Each Hard Disk Drive (HDD) read/write system needs a control logic for the head posi-

tioning to identify the correct user data sector that has to be read or written. These posi-

tioning operations are controlled by the Servo Subsystem that is part of the Hard Disk 

Drive R/W channel [2.3], [2.4]. Not only at the read/write system startup and every time 

there is a track change, but also during track following, the Servo Subsystem is conti-

user data 
sector Disks (platters) 

coated with a 
ferromagnetic 
layer 

 

track 

actuator 
control logic 

read/write heads 
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Figure 2.2.1  User, normal servo and miniwedge servo data 

 

nuously running and aligns the head over the track itself.  

The servo data are recorded along each track, distributed in each wedge of the Hard 

Disk (Figure 2.2.1). When the read/write head moves from one track to another (track 

seek) it is necessary to read a normal servo sector that contains information about the sig-

nal phase and gain (preamble), the end-of-synchronization recognition sequence (Servo 

Address Mark), the encoded servo sector location on the hard disk (graycode), the head 

perfect positioning on the hard disk track (A-D bursts) and eventually the hard disk track 

eccentricity (Repetable Run Out).  

During recording or retrieval of user data while staying on the same track it is necessary 

to regulate the head position (track following). The miniwedge servo sector supplies this 

information: it contains only the preamble, the Servo Address Mark and the bursts fields 

[2.5], [2.6] [2.7]. 

 

2.3  Hardwired vs. Programmable approach 

The Servo Subsystem realizes the correct head positioning on the track decoding the ser-

vo sectors by means of hardwired Finite State Machines (FSM). The main one, the arbi-

ter, decides on the behavior of the Servo Subsystem: Regular (for correct head position-

ing) or Spiral (Repeatable Run Out writing process). The Regular process is implemented 

by the Regular Servo Sequencer (RSS) Finite State Machine that realizes the correct head 

positioning with the support of other Servo system embedded blocks. A hardwired FSM 

approach would reach the best performance, but losing in terms of flexibility, since after 

Integrated Circuit (IC) fabrication the behavior of the Servo subsystem couldn’t be mod-

ified if some changes of the design are needed. 

The scaling down process increases the design complexity, so non-recurring design and 

manufacturing costs (Figure 2.3.1). It is possible to integrate more transistors on the same 

die and their number is exponentially high. This complexity forces the introduction of dif-

ferent computer-aided design (CAD) tools, more expensive to acquire and maintain, to 

better manage the hierarchical block level designs. In addition to the digital part, it is 
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Figure 2.3.1  ASIC non-recurring design and manufacturing costs 

 

possible to integrate also analog and mixed signal components on the same die increasing 

also design, verification and layout costs. Besides the chance of silicon failure is quite 

high causing higher test and product engineering costs. At last the cost of a mask set for 

sub-100nm designs is multi-million dollar [2.8]. 

These high non-recurring design and manufacturing costs imply either larger break even 

volumes at fixed per-unit costs, or prohibitive per-unit costs at fixed volumes. The pro-

grammable approach is an alternative implementation to ASICs that is rapidly emerging. 

An example is the Application Specific Instruction-set Processors (ASIPs). The pro-

grammability of these devices enables the mapping of different generations of an applica-

tion onto the same ASIP reducing so the non-recurring design, verification, layout and 

test costs. A programmable approach provides also a much lower risk because for differ-

ent application generations it is necessary to write and debug only firmware, not working 

hardware. 

The firmware solutions on an ASIP cause a productivity benefit, but also a loss of design 

quality (measured in area, delay, power). This disadvantage is acceptable because they 

are more flexible. The ASIP approach allows designing an embedded device for a specific 

application maintaining the ASIC performances with a programmable characteristic. 

The presence of different Hard Disk Drive Market Segments, characterized by various 

kinds of media supports, with the necessity of peculiar Read/Write channel systems, 

needs different Servo sectors and consequently different Servo subsystem. A programma-

ble architecture, an Application Specific Instruction-set Processor (ASIP) [2.9],[2.10] re-

duces the high cost of Servo Subsystem design. The proposed ASIP, the Micro-

programmed Servo Sequencer (MSS), maintains the same elaborating frequency of the 

Regular Servo Sequencer and offers an incomparable degree of flexibility.  
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The MSS Instruction Set Architecture (ISA) has been customized for the emulation of a 

generic RSS behavior and takes into consideration different Hard Disk Drive market 

segments. The ISA contains all the fundamental instructions for the correct description of 

the Regular Servo Sequencer. The simple ASIP architecture and some embedded opera-

tions allow the achievement of the appropriate performance, needed to implement also the 

most critical control systems, like RSS [2.11]. The reprogramming process allows initia-

lizing the Micro-programmed Servo Sequencer behavior with the appropriate firmware 

according to the HDD market segment, so after IC fabrication it is possible to make 

changes of this behavior reprogramming the microcontroller with a specific firmware, 

thus reducing design costs of future RSS. 
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3 The Microprogrammed Servo Sequencer 

 
 

he Microprogrammed Servo Sequencer (MSS) is an Applica-

tion Specific Instruction-set Processor (ASIP). A typical RISC 

processor, the MIPS (Microprocessor without Interlocked 

Pipeline Stages), has been studied to derive MSS elaborating core ar-

chitecture. The MSS Instruction-set implements Servo control logic 

operation. To achieve better performances some embedded logic 

which communicates with MSS are introduced. A reprogramming 

process by means of a Finite State Machine can change the behavior 

of MSS. 

T
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3.1 MIPS 

The MIPS (Microprocessor without Interlocked Pipeline Stages) is a RISC processor with 

4 pipeline stages (Figure 3.1.1) born in 1981 at Stanford University with professor Hen-

nessy. Each instruction has to go through the Instruction Fetch, the Instruction Decode, 

the execute, the memory access and the write back. The first MIPS processors have a 32-

bit architecture; the last ones have a 64-bit architecture. In the following paragraphs the 

Microprogrammed Servo Sequencer Instruction-Set Architecture has been described in 

comparison to MIPS features. 

 

 

Figure 3.1.1  MIPS architecture 

 

3.2  Application Specific Instruction-set Processor architecture 

The ASIP Architecture is derived from the Microprocessor without Interlocked Pipeline 

Stages, which presents more than 64 different 32 bit instructions [3.1]. The MIPS instruc-

tion-set is a Reduced Instruction-set Computer (RISC) approach. The characteristic of a 

RISC approach are: 

� high clock cycle frequency; 

� low instruction execution time; 

� fixed instruction length which involves simple instruction-set architecture; 

� large firmware because the instruction-set is composed by simple instructions. 

The alternative to RISC approach is the CISC architecture that presents these features: 

� reduced clock cycle frequency; 

� high instruction execution time due to complex instructions; 

� not fixed instruction length; 

� small firmware because CISC instructions implement complex operations. 

The choice of a RISC approach brings to simpler microcontroller hardware architecture 

than a Complex Instruction-set Computer (CISC) one. The memory architecture is Har-

vard (Figure 3.2.1): there are two memories for data and instruction, so it is possible to 

access in one clock cycle both to data memory and to instruction memory. The Von 
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Neumann (Princeton) memory architecture implies only one memory for both data and 

instructions decreasing microcontroller performances: the execution of a single instruc-

tion may need at least two clock cycles increasing firmware execution latency (Figure 

3.2.2). 
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Program
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Figure 3.2.1  Harvard memory architecture 
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Figure 3.2.2  Von Neumann memory architecture 

 

 

Commercial microcontrollers have 16, 32 or 64 bit architecture. The Microprogrammed 

Servo Sequencer has an 18 bit architecture customized for the specific application. 

 



The Microprogrammed Servo Sequencer 

 

20 

3.3  Microprogrammed Servo Sequencer Architecture 

The Microprogrammed Servo Sequencer Architecture is composed by an elaborating 

Core, programmable ports, 4 fixed module embedded counters for Servo operations and a 

generic programmable one, managed by COUNTER instruction (Figure 3.3.1). MSS is 

described in RTL VHDL language. Its code is parametric to easily change registers and 

instruction fields’ length. In the MSS reprogramming phase the Servo designer writes the 

firmware for registers and signals initialization (signal mapping), and the instructions that 

have to be executed by the Processor according to the RSS behavior. 

 

 

 

Figure 3.3.1  Microprogrammed Servo Sequencer architecture 

 

 

The most important characteristic of this Application Specific Instruction-set processor is 

its I/O ports programmability. The MSS has to be used to substitute different Servo sub-

system belonging to different Hard Disk Drive system, so the input and output signals 

may change from Hard Disks to others. By means of firmware reprogramming it is possi-

ble to define precise correspondences between hardware and signal labels recording this 

information in the data memory. This process is called signal mapping and it is explained 

in 3.4.1. 

 

3.3.1 The elaborating core 

The elaborating core (Figure 3.3.2) is based on adapted MIPS architecture: it is composed 

of a Program Counter (PC), an Instruction Unit (IU), a Register Unit (RU) and an Arith-

metic Logic Unit (ALU). The MSS architecture performs the Instruction Fetch through 

the PC and the IU, the Instruction Decode through the RU and the Execute by the ALU. 

The Memory Access process is not performed: the Microprogrammed Servo Sequencer 
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has only Register Unit and Instruction Unit, but not external memory. So that it can have 

only two pipeline stages in spite of four achieving high performance. The Write-Back 

process is substituted by the STORE instruction, because it’s not necessary to memorize 

all the executed instructions results. 
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Figure 3.3.2  MSS elaborating core 

 

The PC provides the address instrAddr of the instruction that has to be read in the IU; it 

can be programmed with the number of instructions that are contained in the IU. The in-

structions are collected in sequence by means of a counter. It is possible also to have an 

out of order execution caused by J instruction, such as JUMP. The configuration signals 

instr_vs_pc and addr_vs_pc manage this operation. 

 

 

Figure 3.3.3  Instruction Memory details 
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The Instruction Unit (Figure 3.3.3) contains a RAM single port for the firmware instruc-

tions memorization. The input signal instrAddr from PC provides the address of the in-

struction that has to be collected from RAM. The output signal instr represents the in-

struction which has to be executed. PC and IU manage also the control of J instructions 

through an embedded handshake protocol by means of instr_vs_pc and addr_vs_pc sig-

nals. 

 

Figure 3.3.4  Register Unit details 

 

The Register Unit (Figure 3.3.4) is composed by a RAM dual port memory (if an R-type 

instruction has to be executed it is necessary to read two different values from RAM) and 

a control logic for the management of signal mapping. A unique addressing space for in-

ternal memory registers and I/O ports signals have been defined. In Figure 3.3.5.a and 

Figure 3.3.5.b two addressing space examples are shown: in the Servo application ver-

sion 1, for example related to a low end market segment Servo, it is necessary to define 

more information about signal mapping (due to the need of more in/out signals) than in 

the Servo application version 2, for example related to a high end market segment. 

The Arithmetic Logic Unit (ALU) executes logic and arithmetic operations between a and 

b coming from RU. If rd1 and/or rd2 are related to rs1 and rs2 signal labels mask1 and 

mask2 input contain information about the significant bits of these two signals (rd1 and 

rd2 dimension is 12 bit, but a signal dimension can have lower length). Whenever the 

ALU executes an operation, its result is memorized in the embedded register accumulator 

Acc so that during firmware execution every instruction can access to the previous calcu-

lated value. The output signal ovf is generated for the communication with RU concerning 

instruction such as COMPI, ADD and COMPNI. 
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Figure 3.3.5  a) Addressing space Servo version 1 example 1; b) Addressing space Servo version 2 example 

 

3.4 Instruction-Set Architecture 

The MSS ISA is derived from the MIPS ISA (Figure 3.4.1) and it has been reduced from 

more than 64 to 16 instruction types: only the necessary ones are maintained and some of 

them are modified to customize the architecture for Regular Servo Sequencer emulation. 

It presents three different kinds of instructions: Register (R), Immediate (I) and Jump (J) 

instructions (see Figure 3.4.2), but the instructions fields number and length are reduced.  
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Figure 3.4.1  MIPS instruction-set 
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Figure 3.4.2  MSS Instruction-set 

 

In fact there are only three fields (two in J instruction) with instructions codification in 

the aluOp field (Arithmetic Logic Unit operation). This original implementation is due to 

the need of reduce instruction bit length to preserve block size (and power dissipation). In 

fact a 4 bit instructions encoding in spite of MIPS ISA 6 bit one is introduced. The MIPS 

ISA (Figure 3.4.3) instruction length is reduced from 32 bit to a lower length: rd, shamt, 

funct fields are eliminated because they are not necessary for the dedicated MSS IS; ad-
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dress and immediate fields are reduced because analyzing different Servo applications 

their firmwares have less than 1 million instructions (20 bits are enough for instructions 

addressing). In Figure 3.4.4 an example of MSS dimensioning has been shown: the MIPS  
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Figure 3.4.3  MIPS Instruction-set 
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Figure 3.4.4  MSS Instruction-set 

 

 

Table 3.4.1  Instruction-set architecture 

Instruction Type 

R I J 

AND *rs1&*rs2 COMPI If *rs1=const -> ovf = 2 JUMP 
branch un-
conditioned 

OR *rs1|*rs2 WAIT ctrl SG, HALT NOP No op 

ADD *rs1+*rs2 COMPNI If *rs1!=const -> ovf = 2 JUMPCS 
branch condi-

tioned 

CONCAT *rs1&*rs2 SLLR *rs1<<imm   

COUNTER generic counter STORE *rd=acc   

SET *rs1=sig SET_V *rd=const   

NOT Not (rs1)     
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ISA instruction length is reduced from 32 bit to 18 bit length [3.2]. The Instruction Set 

definition is derived from the behavior of the Regular Servo Sequencer: the firmware 

program based on the MSS IS substitutes the RSS operations. Each RSS state manages 

control signals that drive embedded control system blocks, like detectors, for the recogni-

tion of Servo pattern. The Microprogrammed Servo Sequencer firmware describes this 

state diagram behavior. 

In Table 3.4.1 the R, I and J instructions have been shown in details. The R instructions 

manage two operands rs1 and rs2 which can be two registers, two signals or a register 

and a signal. It is possible to have also the accumulator Acc in spite of rs1 or rs2. These 

instructions are: 

� AND operates the “and” bitwise of two values: 

- rs1 and rs2 registers from data memory, 

- rs1 and rs2 input signals, 

- rs1 register and rs2 input signal or vice versa, 

- rs1 register or input signal and Acc accumulator or vice versa; 

� OR operates the “or” bitwise of two values (the same types of AND 

instruction); 

� ADD operates the sum operation of two values (the same types of the above 

instruction); 

� CONCAT operates the concatenation of two values: rs1 and rs2 input 

signals. The operation is correct only if the sum of the two signals bit length 

is smaller or equal than the registers bit length; 

� SET initializes rs1 with rs2 value: rs1 must be an output signal and rs2 

could be an input signal, a register or the accumulator Acc; 

� COUNTER is a customized instruction: it manages an embedded 

programmable counter. The details of this instruction are described in 

paragraph 3.4.3. 

The I instructions include the operand address, rs1, which can be a register or a signal, 

and a constant, const. They are: 

� NOT operates the negation of rs1 value: rs1 can be an input signal, a register 

or the accumulator Acc; 

� COMPI operates the equality test on rs1 value and const constant: rs1 can be 

a register, an input signal or the accumulator Acc; 

� COMPNI operates the inequality test on rs1 value and const constant (the 

operand rs1 is of the same types of the COMPI instruction); 

� SLLR operates the shift logical left of rs1 value of const positive constant 

position, if const is a negative value SLLR operates the shift logical right 

(the operand rs1 is of the same types of the above instruction); SLLR 

substitutes the instructions Shift Logical Left (SLL) and Shift Logical 

Right (SRL) to reduce the instruction types number, so maintaining aluOp 

field of 4 bit wide without any instruction length modification;  
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� STORE saves the result of the previous instruction at the address rs1 (write  

back operation): rs1 could be a register or an output signal; 

� SET_V initializes rs1 with const value: rs1 must be an output signal; 

� WAIT makes the ASIP idle until rs1 assumes the value indicated by const 

value. The WAIT instruction has also a particular configuration for the 

activation of the Servo Gate control; this operation is described in 3.4.4. 

The J instructions are the jump instructions: the immediate field contains the destination 

address. They are: 

� NOP is a no operation instruction: the immediate field is the iterations 

number;  

� JUMP is an unconditioned branch: after a JUMP the next instruction to be 

executed is at the immediate address in the instruction memory; 

� JUMPCS is a conditioned branch that is realized through the series of two 

instructions: the first provides the overflow information and the second is 

the JUMPCS (Figure 3.4.5). The ADD, COMPI and COMPNI instructions 

provide the overflow information by means of the ovf signal. The Jump 

operation is executed only if the ovf signal, generated by the instruction 

associated, is at ‘10’. This kind of approach allows JUMPCS to be combined 

with different kind of test: not only an equal test (COMPI and COMPNI), 

but also, for example, an add overflow test (ADD). The JUMPCS instruction 

is explained in details in 3.4.2. 

 

 COMPI     rs1    rs2

JUMPCS  imm
 

Figure 3.4.5  JUMPCS example 

 

The effect of each instruction may be memorized through STORE operation that 

substitutes the write back phase typical of commercial microcontrollers. This causes an 

overhead latency that it is accepted because few firmware instructions need the write back 

process for this specific application.  

 

3.4.1  Signal Mapping 

The signal mapping provides a correspondence between each firmware label and one or 

more signals. Each label represents the port address and mask information of the respec-

tive signal. When the MSS has to execute an instruction containing a signal label ope-

rand (a firmware label), the RU extracts the correct signal label value masking the port at 

which the signal/signals is/are connected (Figure 3.4.6). The complex mechanism of sig-

nal mapping has been introduced for two reasons: 

• Flexibility: it may be that in different firmware versions related to different 

Servo systems some signal label may change their dimension or significance. 

Signal mapping provides a way to have different interpretations of signals la-
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bels with a complete disconnection between signals connected to ports and sig-

nals labels in firmware. In Figure 3.4.6 sig_a label has different interpretations 

in each Servo firmware versions. 

• Power consumption reduction: the signal mapping mechanism lead to consider 

only significant information that are necessary for a particular Servo system, 

not all signals connected to ports. So the ALU operations are executed on li-

mited values, only the necessary ones (Figure 3.4.6).  

 

MSS

Sig_a = in_b
Sig_a = 

in_b & in_c

MSS

 

Figure 3.4.6  Signal Mapping mechanism example 

 

000001000001
Port_1

mask

MSS

45 10
0000 0101 0101

& = 0000 0000 0010

 

Figure 3.4.7  Signal Mapping instruction execution example 
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When the Microprogrammed Servo Sequencer has to execute an instruction containing a 

signal operand, the Register Unit: 

1. extracts from data memory the signal port and mask; 

2. applies the signal mask to the correspondent port value; 

3. send the obtained value with the signal mask to the ALU. 

Then the ALU executes the operations described in the RSS ISA. In Figure 3.4.7 an ex-

ample is shown: the RU executes an ADD instruction with register reg_b and signal sig_a 

operand. Sig_a value is obtained masking the port number one. 

 

3.4.2  JUMPCS instruction 

The JUMPCS is part of a conditioned branch that is realized through the sequence of two 

instructions: the first one provides the overflow information and the second is the 

JUMPCS. The Jump operation is executed only if the ovf signal, generated by the asso-

ciated instruction, is ‘10’: (‘00’ indicates no information, the ASIP waits; ‘01’ stays for 

false, the Jump is not executed). This kind of approach allows JUMPCS to be combined 

with different kind of test: not only have an equal test like COMPI and COMPNI, but al-

so, for example, an add overflow test (ADD) and the Servo Gate control (WAIT SG 0). 

Due to the two microcontroller pipeline stages, one RAM dual port register memory la-

tency and one extra clock cycle latency for reading instruction in the instruction  

 

 

Figure 3.4.8  JUMPCS execution 
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memory it isn’t possible to collect from instruction memory the correct instruction that 

has to be executed after JUMPCS without delay. To achieve a better performance the pre-

fetch technique has been introduced: the instruction corresponding to the jump destination 

is anyway read from the instruction memory during the first cycle of the JUMPCS fetch; 

in the second clock cycle the jump destination is memorized in a register, while the in-

struction following JUMPCS in the firmware code is read. In the third clock cycle the 

correct one, chosen between the two prefetched instructions, is executed. This technique 

allows the reduction of the JUMPCS latency from 3 to 2 clock cycles. Since the MSS 

ASIP requires many JUMPCS in the firmware, the latency reduction cuts down signifi-

cantly the total firmware execution time.  

In Figure 3.4.8 it is shown an example of JUMPCS execution where the ovf signal is gen-

erated by a COMPI instruction. This signal is ready after 2 clock cycles after JUMPCS 

decoding and during COMPI execution.  

 

3.4.3  Generic Counter 

COUNTER instruction manages the programmable counter CNT. In Figure 3.4.9 it is 

shown the COUNTER configuration for CNT initialization: COUNTER CNT reg1 sets 

generic counter to reg1 value, whereas instruction COUNTER CNT 126 starts the decre-

ment of the counter with end_CNT signal value announcing the end of this operation. 

COUNTER is a background operation: the firmware execution continues with the instruc-

tions following COUNTER. The end of the counter decrement must be verified with a 

WAIT instruction on the end_CNT signal. 

 

 

Figure 3.4.9  COUNTER instruction 

 

3.4.4 Servo Gate control 

The WAIT instruction has a particular configuration for the activation of the Servo Gate 

control: if the first field, sig1, assumes the special value (SG), a dedicated address is gen-
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erated to recognize the Servo Gate control operation. The Servo Gate is an input enable 

signal whose value must be periodically verified to correctly activate or terminate the 

Servo operations: a custom logic, designed to achieve better performance, is activated to 

perform this operation through the WAIT instruction. In Figure 3.4.10 the Servo Gate 

WAIT configuration is shown: the WAIT SG 0 instruction activates the Servo Gate con-

trol and the associated JUMPCS instruction waits for the positive or negative conclusion 

of this operation. If this control has no success the firmware execution jumps to fail-

ure_state. 

 

Figure 3.4.10  Servo Gate WAIT 

 
 

3.4.5 Embedded counters 

The MINIWEDGE, PRBL, RRO1 and RRO2 counters are fixed module embedded 

counters that communicates with the MSS by means of internal embedded signals. These 

four counters cannot be described by means of the other generic counter instruction 

because their activations involve too much input signals, so the generic counter approach 

would have penalized MSS performances. 

 

3.5 Reprogramming process 

The Reprogramming process achieves the MSS behavior modification to fit different 

market Segment Servo Sequencer characteristic. This process is executed only during  

 

 

Figure 3.5.1  Reprogramming Finite State Machine 
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each Hard Disk Drive system bootstrap: Regular Servo Sequencer industrial implementa-

tion has to be initialized by means of configuration information contained in a memory on 

hard disk drive channel chip board; in this memory can be loaded also the firmware data 

to allow the Microprogrammed Servo Sequencer reprogramming.  

The reprogramming process has been implemented by means of a Finite State Ma-

chine (Figure 3.5.1) that monitors the Microprogrammed Servo Sequencer states. This 

process (Figure 3.5.2) is based on an object code file, the Machine Code (MC), to be read 

during this phase. The MC contains information about signal mapping, register memory 

and instruction memory and it is generated by a custom assembler written in C language.  

 

 

Figure 3.5.2  Reprogramming process 

 

 

The firmware, an assembly program, is written by the Servo designer and it is based on 

the MSS ISA. The firmware consists of three sections (Figure 3.5.3 and Figure 3.5.4): 

1. Initialization of registers: the registers are initialized with an hexadecimal 

value and a label is associated to each of them;  

2. Initialization of signals: it is defined each signal mapping by associating to 

the signal label its port and mask; 

3. Program: it describes the behavior of the microcontroller, in particular the 

part of the firmware code showing the sequence of operations that must be 

executed using the instructions available from MSS ISA. In this part of the 

assembly code it is possible to refer to registers and signals using the labels 

associated to them during previous initializations. Other labels may be 

used for some code lines, so these labels may be used for jump instructions 

for example. 
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Registers

instructions

Firmware

#

SPN_PGR_MIN   006

…

SEQR_SG port_1 1

…

SEQR_PGR_SRST  port_out_2 32

#

IDLE

AND SPN_PGR_MIN t7  

OR   Acc SEQR_SG

NOT SPN_PGR_MIN 

ADD  Acc SEQR_SG

COMPI   Acc  0

JUMPCS     IDLE

SRL    SEQR_SG   9

…

#

 

Figure 3.5.3  Firmware 
 

#

SPN_PGR_MIN   006

…

SEQR_SG port_1 1

…

SEQR_PGR_SRST  port_out_2 32

#

IDLE

AND SPN_PGR_MIN t7  

OR   Acc SEQR_SG

NOT SPN_PGR_MIN 

ADD  Acc SEQR_SG

COMPI   Acc  0

JUMPCS     IDLE

SRL    SEQR_SG   9

…

#

1

0

163DB51

…

1

12

317A19

…

2

0

1EF3285

…

Machine CodeFirmware

 

Figure 3.5.4  MSS Firmware and Machine Code: the MC I expressed in decimal coding 

 

 

Figure 3.5.5  IDLE reprogramming phase: the MSS is inactive 
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At system startup the MSS is in the idle state (Figure 3.5.5) and the reprogramming 

process is triggered from the start control signal.  

Figure 3.5.6 shows the Loading Data (LD) state: the register memory is initialized with 

register values and signal mapping (ports and masks corresponding to signal labels). The 

instruction memory is booted in the Loading Word (LW) state (Figure 3.5.7).  

 

 

Figure 3.5.6  LD reprogramming phase 

 

 

Figure 3.5.7  LW reprogramming phase 

 

 

Figure 3.5.8  RN reprogramming phase: firmware execution 
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In the RuNning (RN) state the Microprogrammed Servo sequencer executes the firmware 

that describes the behavior of the Regular Servo Sequencer (Figure 3.5.8). When a head 

focus process is started and a Servo Sector must be read, the MSS is in RN state and ex-

ecutes the firmware; at the end of the elaboration the MSS is set back in idle state until 

the next head focus process. 

 
 



 

35 

 

3.6 Bibliography 

[3.1] D.A. Patterson, and J. Hennessy, “Computer Organization and Design”, Mor-
gan Kaufmann Publishers Inc. San Francisco, CA, USA, 2004. 

 
[3.2] P. Baldrighi, M.M. Maggi, M. Castellano, C. Vacchi, D. Crespi, P. Bonifaci-

no, “Implementation of Microprogrammed Hard Disk Drive Servo Sequenc-
er”, Proc. 2008 11th EUROMICRO Conference on Digital System Design Ar-

chitectures, Methods and Tools, IEEE, pp. 442 – 446, Sep. 2008. 
 



 

36 

 



 

37 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 The verification process 

 

he CMOS scaling down process has generated multi-million 

gate ASICs with necessary circuit complexity increasing. In 

the last few years SOCs and SOPs, which consist of a complex 

system composed of different blocks such as elaboration cores, 

memories, communication modules integrated in a single chip, are 

often adopted. These systems have better performances and reduced 

chip area than simpler ASICs, but the main disadvantage is the com-

plexity of these systems: during RTL design the number of function-

al bugs increases exponentially with system complexity, so the 

process of verification becomes essential to reduce bugs number be-

fore the manufacturing process.  

 

T
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4.1 The importance of verification 

In Figure 4.1.1 the digital Design and Manufacturing flow has been shown. The first 

phase consist of chip specs definition; starting from design specs the RTL description is 

generated; after a first verification process the Synthesis of RTL creates the netlist ready 

for the prototype phase; another verification process to check RTL source code and netlist 

correspondence is needed before realizing prototype; the prototype must be tested to con-

trol chip features correctness; if the test is successful the manufacturing process goes on 

and product chips are realized; before selling them a final test is needed for rejecting 

those that don’t work. Every verification process is needed for the bugs elimination. If the 

bugs are resolved before prototype phase chip cost doesn’t grow too much, but if some 

bugs are found during prototyping or manufacturing chip costs grows exponentially 

(Figure 4.1.2). That’s why the verification process is so important. Moreover the increas-

ing complexity of chip leads to an increasing number of functional bugs, so that the veri-

fication process is essential [4.1], [4.2]. 

 

Specs

Manufacturing

Prototype

Synthesis

Design

Verification

Verification

Test

Test

 

Figure 4.1.1  Design and Manufacturing Flow 

 

Figure 4.1.2  Chip cost 

 

During chip design and manufacturing processes it is necessary to consider not only that 

specs have to be met, but also three different factors, which can determine the chip suc-

cess or failure [4.3]: 

a) Time to market: chip success depends on how much time elapses from chip 

specs definition to product availability on market: the longer is this period the 

fewer will be chip revenue. In fact it is important that the chip becomes a  
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Figure 4.1.3  Market Window Revenue 

 

Figure 4.1.4  Market Window cumulative revenue 

 

 

Figure 4.1.5  Loss of Revenue due to Delay to 

Market 

 

Figure 4.1.6  Loss of cumulative Revenue due to delay to 

market 

 

product during the Market Window, a temporal window in which there is this 

product demand (Figure 4.1.3 and Figure 4.1.4). If the product delay to Market 

increases, the sales decrease a lot causing fewer revenue (Figure 4.1.5 and Fig-

ure 4.1.6). The verification process is able to find more quickly design bugs for 

the Delay to Market reduction. 

b) Costs: the most important focus for a microelectronic society is to have the 

highest revenue by means of reducing design and manufacturing costs. With 

the CMOS scaling down process for the realization of integrated circuit the 

transistor dimension reduction allows to integrate more transistors in one chip 

increasing chip density. This phenomenon leads to the chip cost reduction con-

sidering product high volume, but the scaling down process causes also an in-

creasing of masks cost for the integrated circuit manufacturing. If some bugs 

are found during chip test process, they have to be resolved, making necessary 

modifications, doing a review of the entire circuit with chip respin. In the last 

years respins due to functional bugs are increased (Figure 4.1.7). This aspect 

together to the increasing masks cost lead to the necessary verification process 

introduction and improvement. The goal of the verification process is to reverse  
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Figure 4.1.7  Respins due to functional bugs [4.4] 

 

chip respins tendency resolving functional bugs before prototyping and manu-

facturing processes reducing Non-Recurring Engineering (NRE). 

a) Quality: it is important to realize bug free chips. The bug not free chips diffu-

sion in the market could cause other than a loss of customer satisfaction also a 

warranty cost increasing. In the worst cases this bug not free chips lead to the 

damage of the corporate image till customers loss.  

In the last years Design for Verification has became an important aspect of the entire 

process of Design, Prototype and Manufacturing: a designer may think about verification 

during circuit design to facilitate the verification process increasing the probability of 

finding more functional bugs in the first phase.  

The functional verification controls design correctness before its manufacturing. Relating 

to digital circuits this kind of verification consists of two technology kinds: 

• Static technology: generally it is called formal verification. It consists of ana-

lyzing RTL code to find bugs such as, for example, unreachable lines of code. 

It controls the syntactical aspect of RTL source code.  

• Dynamic technology: it is called simulation-based or emulation-based verifica-

tion. This kind of approach requires not only the source code, but also the test-

bench, that is an example of a possible environment in which the design will 

work. This verification phase is not automatic: it is necessary to build the entire 

testbench and the checkers for verifying design correctness.  
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The process of verification is necessary not only for masks cost saving, but also for the 

efficiency in findings bugs sources. 
 

Functional verification uses three approaches: 

- Black-box approach: in this case the design is treated as a black box. It com-

municates with verification environment only with input and output pins. So in-

itializing input pins only output pins, that are very few considering all chip sig-

nals, can be controlled (Figure 4.1.8). In case of bugs it is very difficult, almost 

impossible in today’s large designs, to locate the sources of the problems. The 

unique advantage is that this kind of approach does not depend on implementa-

tion. 

 

 

Figure 4.1.8  Black Box approach 

 

- White-Box approach: the design is full observable and controllable, so that in-

ternal signals, structure and implementation are visible (Figure 4.1.9). In case 

of bugs found the problems sources are easily located. The disadvantage of this 

approach is that any changes in design implementation cause the verification 

environment modification. It is useful to verify low level implementation spe-

cific features. Assertions in RTL code are ideal for this purpose. 

 

 
Figure 4.1.9  White Box approach 
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- Grey-Box approach: some non-functional modification, such as additional reg-

isters to control internal states, are added to the design to improve controllabili-

ty. 

In today’s large designs the increasing complexity of the circuit lead to a more important 

verification process able to find greater number of functional bugs so that only white-box 

and grey-box approach can be used. 

The verification process is different from test process (Figure 4.1.10): the first has to find 

functional bugs in the design; the second is necessary to assure that the product chip cor-

responds perfectly to the netlist and chip mass manufacturing has a good yield. The in-

creasing verification importance lead to an increasing attention on the verification instru-

ment. 

 

 
Figure 4.1.10  Verification and test processes 

 

4.2 Assertion based verification 

The Dynamic functional verification is based on the Design Under Verification (DUV) 

behavior control during simulation and emulation. The increasing complexity of today’s 

circuit makes impossible the brute force approach: to stimulate input with all combina-

tions of values verifying all signals behaviors correctness. So that a design is verified with 

a subset of chip functioning situations.  

The ABV is based on assertions, that are particular lines of code inserted in RTL source 

code. They can describe both low level design functionality (Implementation assertions) 

both high level characteristic (Specification assertions). The assertions have been used for 

decades in software implementation, and in the last decade they are being used also in 

hardware design. This phenomena is due to the simple use of the assertion: it is possible 

to insert them in the code both during the first design phase both during the last design 

phase without any changes in RTL source code. The assertions are considered as com-

ments in the netlist generation process so that there isn’t any non functionality feature 

added to silicon. Both designers and verification engineers can use assertions. Generally 

assertions are inserted gradually to the source code: they are created with new design 

functionality. There aren’t limitations in assertions number: complex designs may have 

hundreds or thousands of assertions.  

A great advantage of assertions use is their reusability characteristic: in every design, pro-

totype and manufacturing phases they can be inserted without any modification (Figure 
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4.2.1). They can be used both in verification both in testing process to check that design 

behavior corresponds to design specs. 

 

 

Figure 4.2.1  Design and manufacturing process whit assertion checkers 

 

There are more advantages in assertion use in design process. The first is the design ob-

servability increasing: in a classic verification environment a stimuli generator testbench 

is created; it is applied to the Design Under Verification and then a receiver checks the 

output to find errors. During simulation to identify a bug by means of a testbench is ne-

cessary to generate opportune stimuli for design input so that the bug is stimulated (con-

trollability) and also propagated to design output (observability), see Figure 4.2.2. In 

some cases it is possible that some bugs are not propagated to output pins causing a lack 

of verification information (false negative): in Figure 4.2.2 the checker finds only the bug 

that is propagated to output pin. 

 

 

Figure 4.2.2  Not ABV approach 
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To increment the probability of findings bugs and locate their sources, the easiest way is 

to move the checkers nearest to the sources: if the checkers are located near bugs sources 

problems are immediately pointed out (Figure 4.2.3). In this case it is necessary only to 

care about controllability (input stimuli) so that the bugs are pointed out. Not only it is 

easier to find bugs, but also assertions add more information about the time the bugs oc-

cur and their locations in the source code. Without assertions the testbench is not able to 
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Figure 4.2.3  ABV approach 

 

point out these information, only the stimuli sequence is known, so it is necessary to ana-

lyze the source code starting from output pins to reach bugs sources. In today’s complex 

designs this kind of analysis is quite difficult: the design process includes a lot of persons 

and it may take a lot of time to find bug. 

The Specification assertions can be used to check device interfaces. If during the first 

phase of design there are some discrepancies, the designer notices immediately this com-

munication problem and he/she can resolve it quickly. 

The assertions are used both at block level verification both at system level. In the last 

process there isn’t any checkers for each specific block that compose system, but asser-

tions in code continue to control each block behavior.  

Assertion Based Verification is an important phase in design process. In literature there 

are two assertion language: PSL (Property Specification Language) [4.5] and SVA (Sys-

tem Verilog Assertion) [4.6], [4.7]. Both are IEEE standards with different origins, but 

they have similar characteristic. For Microprogrammed Servo Sequencer verification PSL 

assertion (Appendix 9.1) are used. 

 

4.3 Critical operations 

Due to the complexity of Microprogrammed Servo Sequencer Assertion Based Verifica-

tion has been orientated to the more complex MSS functionality. The resulting critical 

operations are instructions that cause the out-of-order execution of firmware: JUMP, 

branch uncoditioned; JUMPCS, branch conditioned; NOP, no operation (idle condition); 
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WAIT, idle condition till a signal value change. Another critical feature of MSS is the 

Signal Mapping: it must be checked that the MSS reads the exact value for each signal. 

All these features involve Instruction Memory and Register Unit. In paragraph 4.3.1 will 

be explained the assertion based verification of JUMPCS instruction as example. 

4.3.1 JUMPCS 

In paragraph 3.4.2 JUMPCS behavior has been explained, but it is necessary to analyze in 

details this instruction to explain PSL assertion verification applied to it. When a 

JUMPCS is executed, during the following two clock cycles the branch instruction (Instr 

N in Figure 4.3.1) and the not branch instruction (Instr X in Figure 4.3.1) are collected 

from Instruction Memory so that when the overflow signal (the JUMPCS result) is stable 

the correct instruction is immediately ready for execution (prefetch technique). 

 

 
Figure 4.3.1  JUMPCS execution 

 

The firmware example with JUMPCS instruction shown in Figure 4.3.2 is used to explain 

this instruction in detail: the Instruction Memory signals that are involved in JUMPCS 

operations are shown in Figure 4.3.3 and Figure 4.3.4. The first shows the JUMPCS 

branch not execution: instrAddr signal is the address information provided by Program 

Counter; mem_Addr signal is the effective address of the instruction collected from In-

struction Memory, this value may be equal or different to instrAddr in case of out-of-

order instructions execution; data_out signal is the instruction collected from IM, it may 

be that this instruction will not go on execution; instr indicates the instruction that must  
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Figure 4.3.2  Firmware example with JUMPCS instruction 

 

 

Figure 4.3.3  JUMPCS branch not execution signals evolution 

 

 
Figure 4.3.4  JUMPCS branch execution signals evolution 

 

be executed; the overflow signal is the result of JUMPCS operation; addr_vs_pc and 

instr_vs_pc are control signals to update Program Counter configuration. 

 It is supposed that JUMPCS cannot be repeated two times sequentially (JUMPCS is al-

ways associated to the previous instruction). The PSL assertion verification has been rea-

lized by means of three different assertions associated to three different properties: 

- p_jumpcs verifies that when a JUMPCS instruction is in execution in the fol-

lowing clock cycle the instruction in execution is again a JUMPCS, in the next 

… 
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clock cycle the overflow signal must be at ‘01’(branch not executed) or ‘10’ 

(branch executed). There is an exception to this behavior if the instruction be-

fore a JUMPCS is a WAIT SEQR_SG 0. 

 

The previous property must be verified independently on the JUMPCS result. The follow-

ing two PSL sequences are introduced to support the other two properties. They describe 

JUMPCS behavior in two different cases: 

- branch not execution 

 

- branch execution 

 

 

The following PSL property controls that the branch is executed correctly in respect to the 

overflow value.  

--   psl Property p_jumpcs_no is 

  --   always s_jumpcs_no |->  

    --  (instr= data_out 

    --    or (data_out = WAIT_126_0 

    --      and instr = NOP_0))  

 

    --  and ((next(mem_addr, prev(mem_addr,1), nInstr))  

      --  or (((instr(li-1 downto li-lc) = "1010")  

        --  and (mem_addr = instr(li-lc-4 downto li-lc-limm_j)))))  

 

    --  and instr_vs_pc = 4 

 

    --  and next(prev(mem_addr,1), prev(mem_addr,3), nInstr) 

 

    --  and ((addr_vs_pc = mem_addr+1)  

      --  or (addr_vs_pc = mem_addr  

        --  and instr(li-1 downto li-lc) = "1011"  

        --  and not(instr(li-lc-4 downto li-lc-limm_j)=2)  

        --  and not (instr(li-lc-4 downto li-lc-limm_j)=1))); 

 

 --  psl Assert p_jumpcs_no Severity ERROR; 

--  psl Sequence s_jumpcs_ok is  

  --  {instr(li-1 downto li-lc)="0110"[*2]; overflow = “10”}; 

--  psl Sequence s_jumpcs_no is  

  --  {instr(li-1 downto li-lc)="0110"[*2]; overflow = “01”}; 

--  psl Property p_jumpcs is 

  --  always {not(instr = NOP0); 

  --  rose(instr(li-1 downto li-lc)="0110")} |=>  

    --  {stable(instr); (overflow = “01”) or (overflow = “10”)}; 

 

-- psl Assert p_jumpcs Severity ERROR; 
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So the p_jumpcs_no verifies that when there is a JUMPCS and the related upcoming 

overflow is ‘01’: 

- the next instruction to be executed is data_out, the output of Instruction Memo-

ry [blue]; 

- the next instruction to be read is subsequent to the present instruction (if the 

present instruction is JUMP the next instruction must be collected at immediate 

address from Memory) [red]; 

- the present instruction address, mem_addr, is subsequent to JUMPCS ad-

dress [green]; 

- instr_vs_pc must assume the value ‘4’ for the correct configuration of Program 

Counter [violet]; 

- addr_vs_pc must assume mem_addr value incremented of 1 (except in case of 

NOP k instruction, when k is different from 1 and 2) [yellow]. 

The firmware used for JUMPCS branch not execution verification is shown in Figure 

4.3.5 and the related PSL assertions verification is shown in Figure 4.3.6. 

 

 

Figure 4.3.5  Firmware used for JUMPCS branch not execution verification 
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Figure 4.3.6 PSL assertion verification in case of JUMPCS branch not execution  
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In case of JUMPCS with branch not execution with JUMP as subsequent instruction PSL 

assertion verifies some different features: the firmware used for this verification case is 

shown in Figure 4.3.7 and the related PSL assertions verification is shown in Figure 4.3.8. 

 

 

Figure 4.3.7  Firmware used for JUMPCS branch not execution with a subsequent JUMP verification 

 

CLK

7 8 41

Instr 6 JUMPCS 29

01

JUMP 40

6

Instr 40

7 86 419

Instr 6 JUMP 40 Instr 40JUMPCS 29

8 29

Instr 29

10 41

instrAddr

mem_Addr

data_out

instr

overflow

addr_vs_pc

instr_vs_pc

00

0

4

42

42

00

0

0

next

+ 1 =

= 4

9 40

=

JUMP

20

 
Figure 4.3.8  PSL assertion verification in case of JUMPCS branch not execution with a subsequent JUMP  

 

In case of JUMPCS with branch not execution with NOP as subsequent instruction PSL 

assertion verifies some different features (Figure 4.3.9 and Figure 4.3.10). 

 

 

Figure 4.3.9  Firmware used for JUMPCS branch not execution with a subsequent NOP verification 
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Figure 4.3.10  PSL assertion verification in case of JUMPCS branch not execution with a subsequent NOP  

 

The following PSL assertion checks the correct behavior of JUMPCS in case of branch 

execution.  

 
 

 

The characteristics to be verified are: 

- the instruction to execute is data_out, the output of Memory, at the previous 

clock cycles [blue]; 

--  psl Property p_jumpcs_ok is 

  --  always s_jumpcs_ok |->  

    --  (instr=  prev(data_out) 

    --    or (prev(data_out) = WAIT_126_0 

    --      and instr = NOP_0))  

 

    --  and (next(mem_addr, prev(mem_addr,2), nInstr)  

      --  or (((instr(li-1 downto li-lc) = "1010")  

        --  and (mem_addr = instr(li-lc-4 downto li-lc-limm_j))))) 

 

    --  and (prev(mem_addr,2) = prev(data_out(li-lc-4 downto li-lc-limm_j), 2)) 

 

    --  and instr_vs_pc = 4 

 

    --  and ((addr_vs_pc = mem_addr+1)  

      --  or ((instr(li-1 downto li-lc)="1011")  

        --  and (addr_vs_pc = mem_addr)  

        --  and (not(instr(li-lc-4 downto li-lc-limm_j)=1))  

        --  and (not(instr(li-lc-4 downto li-lc-limm_j)=2)))); 

                   

--  psl Assert p_jumpcs_ok Severity ERROR; 
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- the next instruction to be read is subsequent to the present instruction (except in 

case of JUMP as present instruction) [red]; 

- the present instruction address, mem_addr, is subsequent to JUMPCS imme-

diate field [green]; 

- instr_vs_pc must assume the value ‘4’ for the correct configuration of Program 

Counter [violet]; 

- addr_vs_pc must assume mem_addr value incremented of 1 (except in case of 

NOP k instruction, when k is different from 1 and 2) [yellow]. 

 

The firmware used for JUMPCS branch execution verification is shown in Figure 

4.3.11and the related PSL assertions verification is shown in Figure 4.3.12. 

 

 

Figure 4.3.11  Firmware used for JUMPCS branch execution verification 
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Figure 4.3.12  PSL assertion verification in case of JUMPCS branch execution  
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In case of JUMPCS with branch execution with JUMP as subsequent instruction PSL as-

sertion verifies some different features (Figure 4.3.13 and Figure 4.3.14). 

 

 

Figure 4.3.13  Firmware used for JUMPCS branch execution with a subsequent JUMP verification 

 

 

Figure 4.3.14  PSL assertion verification in case of JUMPCS branch execution with a subsequent JUMP  

 

In case of JUMPCS with branch execution with NOP as subsequent instruction PSL as-

sertion verifies some different features (Figure 4.3.15 and Figure 4.3.16). 

 

 

Figure 4.3.15  Firmware used for JUMPCS branch execution with a subsequent NOP verification 
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Figure 4.3.16  PSL assertion verification in case of JUMPCS branch execution with a subsequent NOP  

 

4.4 Simulation based verification 

After the PSL assertions insertion in the RTL source code the behavior of Micropro-

grammed Servo Sequencer has been verified by means of simulations. At first JUMP, 

JUMPCS, NOP and their interactions has been verified. Then WAIT and WAIT 

SEQR_SG, that depends on input signals values, has been verified. For these instructions 

not only firmware, but also input signals values have been changed. At last Signal Map-

ping has been verified. 

So there are three different verification phases: 

� JUMP, JUMPCS and NOP verification: different versions of firmware have 

been written to check all the possible situations that may cause uncorrected be-

haviors. In Table 4.4.1 the firmwares used contain some registers labels: reg0, 

reg1 and reg2. The verification process consists of a simulation with these 

firmwares to point out uncorrected behaviors. The previous firmwares test each  

 

Table 4.4.1  Firmwares for simulation based verifications of JUMP, NOP and JUMPCS instructions 

JUMP JUMPCS NOP 

A: 
  NOT  reg2 
  JUMP  C 
B:  
  NOT  reg1 
  JUMP  A 
C:  
  NOT  reg0 
  JUMP  B 
 

  SET_V reg0, 0 
A: 
  COMPI reg0, 0 
  JUMPCS C 
B: 
  NOT  reg1 
C: 
  COMPNI reg0, 0 
  JUMPCS B  

  NOP  1 
  NOT  reg0 
  NOP  2 
  NOT  reg1 
  NOP  3 
  NOT  reg2 
  NOP  27 
  NOT  reg0 
  NOP  1023 
  NOT  reg1 
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instruction alone, but it is necessary to check also interactions between them; so 

in Table 4.4.1 an example of some firmwares to test the complex situations of 

NOP after JUMPCS instruction are shown. 

In Table 4.4.2 the firmwares represent the following situations: 

a) NOP 1 after JUMPCS branch taken; 

b) NOP 2 after JUMPCS branch taken; 

c) NOP 1023 after JUMPCS branch taken; 

d) NOP 1 after JUMPCS branch not taken; 

e) NOP 2 after JUMPCS branch not taken; 

f) NOP 1023 after JUMPCS branch not taken; 

 

Table 4.4.2  Firmwares for simulation based verifications of NOP 
and JUMPCS instructions possible interactions 

a) 
  STORE 
 reg0, 1 
  COMPI reg0, 1 
  JUMPCS A 
  NOT  reg1 
A: 
  NOP  1 
  AND  reg0, reg1 

b) 
  STORE 
 reg0, 1 
  COMPI reg0, 1 
  JUMPCS B 
  NOT  reg1 
B: 
  NOP  2 
  AND  reg0, reg1 

c) 
  STORE 
 reg0, 1 
  COMPI reg0, 1 
  JUMPCS C 
  NOT  reg1 
C: 
  NOP  1023 
  AND  reg0, reg1 

d) 
  STORE 
 reg0, 1 
  COMPI reg0, 0 
  JUMPCS C 
  NOP  1 
D: 
  AND  reg0, reg1 

e) 
  STORE 
 reg0, 1 
  COMPI reg0, 0 
  JUMPCS C 
  NOP  2 
E: 
  AND  reg0, reg1 

f) 
  STORE 
 reg0, 1 
  COMPI reg0, 0 
  JUMPCS C 
  NOP  1023 
F: 
    AND  reg0, reg1 

 

� For WAIT and WAIT SEQR_SG the test bench has been modified to change 

input signals values because these instructions depends on these ones. Some 

firmwares are written to analyze both single instruction behavior both all possi-

ble interactions with other out-of-order instructions.  

� For Signal Mapping verification two different firmwares are realized: in the 

first all instructions that may use signal mapping mechanism have been intro-

duced; in the second all the possible memory locations for Signal Mapping are 

allocated, then verified with all the instructions. Not only the correct behavior 

of Signal Mapping mechanism has been verified, but also memory reconfigura-

tions.  

 

With this approach all the wrong behaviors have been corrected. For every kind of Mi-

croprogrammed Servo Sequencer needed to fit different Servo application versions the 

Assertion Based Verification allows to verify MSS behavior. This kind of approach can 

also be applied in the Test phase achieving prototyping verification. 
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5 Case study and synthesis results 

 
 

he Microprogrammed Servo Sequencer is able to emulate dif-

ferent Regular Servo Sequencer state diagrams. A Regular 

Servo Sequencer industrial product is used for testing the abil-

ity of MSS. Microprogrammed Servo Sequencer behavior is com-

pared to RSS one. Then the MSS is synthesized in 1.2 V, 65 nm 

CMOS technology. MSS synthesis results are compared with RSS 

results. 
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5.1 Regular Servo Sequencer Finite State Machine 

The Regular Servo Sequencer is a part of an industrial product. It is implemented with a 

hardwired synchronous Finite State Machine. At system Start up the RSS FSM is in idle 

waiting for a Servo pattern reading or writing. When a Servo pattern is going to be read 

the Servo Gate signal is activated: the Regular Servo Sequencer has to orchestrate Servo 

operations. 

 

 

Figure 5.1.1  User, normal servo and miniwedge servo data 

 
In Figure 5.1.2 the Regular Servo Sequencer Finite State Machine is shown: 

- IDLE is the start state; 

- SVO_SG1 and SVO_SG2 states, activated by the Servo Gate, prepare the 

RSS to the Servo pattern decoding process;  

- WAIT_INPUT process waits for the first data of normal Servo pattern (it 

might be the preamble field); 

- PGR_DATA_PRMBL decodes the normal Servo preamble field; if this 

field is not found the Servo Gate is closed and all the Servo operations are in-

terrupted by means of CLOSE_SG state;  

- if the preamble is decoded correctly the WAIT_SAM_SRCH state waits 

for the Servo Address Mark (SAM) field; 

- SAM_SRCH decodes preamble field; 

- GC_DET decodes the gray code which arrives after the preamble field; 

- BRST_DEM decodes the bursts A, B, C and D fields. 

The normal Servo pattern might have zero, one or two Repetable Run Out (RRO) fields: 

- WAIT_RRO1, PGR_RRO1, DATA_RRO1, WAIT_RRO2, PGR_RRO2, 

DATA_RRO2 decode RRO1 and RRO2 fields, if they are present in the Servo 

pattern; 

- WAIT_INPUT_MWG, PGR_MWEGDE, SAM_MWEGDE and BRST_ 

MWEGDE states act the Miniwedge Servo pattern (Figure 5.1.1) decoding 

process;  
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Figure 5.1.2  Regular Servo Sequencer Finite State Machine Diagram 
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- DC_ERASE_SRCH, WAIT_DC_PD, WT_SAM_SRCH_SPN, PGR_ 

SPN_CHK, PRBL_SR_CH manage Servo operations in case of SAM not 

found and preamble not found. 

Every minimal modifications of this Finite State Machine cause the need of redesign and 

verify all the Regular Servo Sequencer FSM. The use of ASIP architecture assures flex-

ibility to the system due to the ability of emulating more Finite State Machines. Thanks to 

this feature the redesign and verification of a complex Finite State Machine can be substi-

tuted by simple firmware rewriting [5.1]. 

 

5.2 Microprogrammed Servo Sequencer approach 

In Figure 5.2.2 the Finite State Machine diagram emulated by Microprogrammed Servo 

Sequencer is shown: it’s behavior is the same of Regular Servo Sequencer Finite State 

Machine (Figure 5.1.2). This diagram is simply the firmware scheme: each state corres-

ponds to a label, which stands for an instruction address (Figure 5.2.1). In the diagram 

some states are added (the grey ones) due to the MSS ASIP nature: an hardwired Finite 

State Machine is a parallel hardware (it can take a decision choosing between more than 

two future operations at a time, in the diagram more than two future states); a processor, 

an Application Specific Processor in this case, is a sequential hardware (it can take a deci-

sion choosing between only two future operations at a time). States insertion is necessary 

to maintain the same behavior of the hardwired RSS FSM. The operation of states addi-

tion does not cause any complexity increasing of the ASIP architecture (it is a zero cost 

operation) because states are simply labels that are translated by the assembler in instruc-

tion addresses (Figure 5.2.1); instead the same operation for an hardwired FSM causes an 

increasing of complexity and area occupation. 

 

 

Figure 5.2.1  State label correspondence (firmware example) 
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Figure 5.2.2  Finite State Machine diagram emulated by Microprogrammed Servo Sequencer 
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Figure 5.2.3  Part of MSS FSM 

 

 

Figure 5.2.4  Firmware example 

 

In Figure 5.2.3 a part of MSS FSM diagram is illustrated [5.2]. The Servo Gate (SG) that 

informs about the Servo pattern read process beginning from the media is the Servo oper-

ation enable signal: when it is high the MSS starts Servo operations, when it is low the 

MSS is IDLE. In (Figure 5.2.4) there is a part of Microprogrammed Servo Sequencer 

firmware which emulates this part of RSS state diagram. In states IDLE and 

STATE_ACB_FIR_LATENCY the generic counter that considers the latency of some 

Servo system blocks is initialized: it is possible to have different system latencies depend-

ing on servo pattern characteristics. 

The complete firmware which emulates the Regular Servo Sequencer Finite State Ma-

chine is shown in the Appendix 9.2. 

 

5.3 Microprogrammed Servo Sequencer dimensioning 

The Regular Servo Sequencer characteristics has been studied to identify the correct di-

mensioning of Microprogrammed Servo Sequencer. The programmable ports are 20, 7 bit 

wide to match the 100 in/out signals of RSS (in case of signals extension greater than 7 

bit CONCAT instruction provides a concatenation mechanism to recover these signals). 

Port addressing is 5 bit wide, but port number is 20 to match Servo operations needs re-

ducing so power consumption and area. It is possible to extend port number till 32 in case 

of signals number and/or dimension increasing. The MSS Register Memory is 
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Figure 5.3.1  MSS Instruction-set 

 

dimensioned with 128 word of 12 bit: the RSS signals are about 100 and the remaining 

memory locations are used for internal registers values; each register is 12 bit wide to 

contain also 7 bit signals and to have the possibility to execute some ADD instructions 

between two 7 bit signals without any addition overflow. So there is a unique 7 bit ad-

dressing space for signal mapping and registers. With this bit information each instruction 

type can be dimensioned (Figure 5.3.1). The R instruction type contains rs1 and rs2 sig-

nals/registers fields; I instruction type contains rs1 signal/register field and immediate 

const field; J instruction type contains 14 bit immediate field. For this particular Servo 

application 480 firmware instructions are needed so a 9 bit addressing is needed and the 

Instruction Memory is dimensioned with 512 word of 18 bit. It is possible to expand this 

memory till 16384 words maintaining the same instruction-set. 

All the RTL source code that describes the Microprogrammed Servo Sequencer is para-

metric: it is possible to change MSS ISA characteristic to fit different Servo applications. 

 

5.4 Behavioral matching verification  
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Figure 5.4.1  Behavioral matching verification 
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The MSS functional simulations have been compared to the RSS on behavioral matching 

verification (Figure 5.4.1): at the beginning a MSS with the data and register memories 

already initialized has been described; it has been then compared with the MSS with the 

Reprogramming FSM through the functional verification simulation-based technique; at 

the end the MSS already initialized has been compared with the Regular Servo Sequencer 

for the behavioral matching verification. This kind of behavioral verification assures also 

the correct loading of data memory and instruction memory: the loading operations are 

verified by means of PSL assertions. 

 

5.5 Synthesis results 

The MSS has been synthesized in 1.1 V, 65 nm CMOS technology with three types of 

transistors: High Voltage Threshold (HVT), Standard Voltage Threshold (SVT) and Low 

Voltage Threshold (LVT). The Instruction Memory makes use of an Intellectual Property 

(IP) single port RAM with 512 words and 18 word bits in 1.2 V, 65 nm CMOS technolo-

gy with SVT transistor: in Figure 5.5.1 IP memory symbol is shown; in Table 5.5.1, Table 

5.5.2, Table 5.5.3, Table 5.5.4 the main characteristics of this memory are indicated. Sin-

gle port memory with process worst, 1.1 V and temperature 125°C is considered to obtain 

Microprogrammed Servo Sequencer area and slack synthesis results, whereas Single port 

memory with process best, 1.3 V and temperature 125°C to obtain dynamic and leakage 

power synthesis results. 

 

 

Figure 5.5.1  RAM single port symbol 

 

Table 5.5.1  RAM single port primary parameters 

Primary Parameters 

Parameter Value 

Number of words 512 

Number of bits 18 

Number of multiplexer inputs 8 

Driving capability 35 

Transistor Standard 

Redundancy No 

Bit Mask no 

Debug Mode Not Available 

Pipeline no 

Zero Hold Time Yes 
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Table 5.5.2  RAM single port pin description 

Pin Description 

Pin Name Pin Function 

CK External clock input for the memory. 

CSN 
Chip Select pin. When this input is logic low, memory is enabled and 
read/write operations can be performed. 

WEN 
Write Enable pin. When this input is logic low, memory is in the write 
mode. 

A[8:0] 
Address Input. The Address input is used to address the location to be read 
during the read cycle and written during the write cycle. 

D[0:17] 
Data Input bus. This is used to write data to the memory location specified 
by the Address Input port during the write cycle. 

TBYPASS 

Memory Bypass in Test Mode. It is used for data path checking. This signal 
is not dependent on clock. Therefore, no setup or hold time is required. 
Whenever this signal is active, the output bus (Q) gets the value of the input 
bus (D) in a specified time delay. This pin is managed by BIST. 

Q[0:17] 
Data output bus. Generates the contents of the memory location addressed 
by the Address Input signals. Q is always buffered. 

RY Memory Handshake signal. 
 
 
 
 

Table 5.5.3  RAM single port derived parameter 

Derived Parameters 

Parameter Value 

Number of rows (rows) 64 words/mux 

Number of columns (cols) 144 bits*mux 

Aspect ratio 0.444 rows/cols 

Capacity 9216 words*bits 
 
 
 
 

Table 5.5.4  RAM single port physical parameter 

Physical Parameters 

Parameter Value 

Width 187.2 um 

Height 64.0 um 

Area 11980.8 um2 
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The Register Unit has been implemented by means of an IP dual port RAM with 128 

words and 12 word bits in 1.2 V, 65 nm CMOS process technology with SVT transistor:  

 

 

Figure 5.5.2  RAM dual port symbol 

 

in Figure 5.5.2 IP memory symbol is shown; in Table 5.5.5, Table 5.5.6, Table 5.5.7, Ta-

ble 5.5.8 the main characteristics of this memory are indicated. Dual port memory with 

process worst, 1.1 V and temperature 125°C is considered to obtain MSS area and slack 

synthesis results, whereas dual port memory with process best, 1.3V and temperature 

125°C to obtain dynamic and leakage power synthesis results. 

 

 

Table 5.5.5  RAM dual port primary parameters 

Primary Parameters 

Parameter Value 

Number of words 128 

Number of bits 12 

Number of multiplexer inputs 8 

Driving capability 35 

Transistor Standard 

Redundancy No 

Bit Mask no 

Write Test Mode Available 

Pipeline no 

Zero Hold Time Yes 
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Table 5.5.6  RAM dual port pin description 
 

Pin Description 

Pin Name Pin Function 

CK1,2 External clock input for the memory. 

CSN1,2 
Chip Select pin. When this input is logic low, memory is enabled and 

read/write operations can be performed. 

WEN1,2 Write Enable pin. When this input is logic low, memory is in the write 
mode. 

A1,2[0:6] 
Address Input. The Address input is used to address the location to be 
read during the read cycle and written during the write cycle. 

D1,2[0:11] 
Data Input bus. This is used to write data to the memory location speci-
fied by the Address Input port during the write cycle.  

SELCK 
Clock select Mux. This will select either of the two clocks i.e. When this 
input is logic low, Functional clock 'CK' is selected and when this input is 
logic high, BIST clock 'MTCK' is selected.  

MTCK1,2 BIST clock. This will be active in test mode of memory. 

TP1,2 
Write Test Mode to enable special BIST test mode. This mode emulates 
the worst write clock skew condition and it is mandatory for Low Lea-
kage option.  

TBYPASS1,2 

Memory Bypass in Test Mode. It is used for data path checking. This 
signal is not dependent on clock. Therefore, no setup or hold time is re-
quired. Whenever this signal is active, the output bus (Q) gets the value 
of the input bus (D) in a specified time delay. This pin is managed by 
BIST.  

Q1,2[0:11] 
Data output bus. Generates the contents of the memory location ad-
dressed by the Address Input signals. Q is always buffered. 

RY1,2 Memory Handshake signal. 
 
 
 

Table 5.5.7  RAM dual port physical parameter 

Physical Parameters 

Parameter Value 

Width 247.2 um 

Height 44.8 um 

Area 11074.56 um2 
 

 

 

Table 5.5.8  RAM dual port derived parameter 
 

Derived Parameters 

Parameter Value 

Number of rows (rows) 16 words/mux 

Number of columns (cols) 96 bits*mux 

Aspect ratio 0.167 rows/cols 

Capacity 1536 words*bits 
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The synthesis process has been realized through Synopsys Design Compiler® at 300 

MHz, the elaborating frequency of the actual Regular Servo Sequencer, with 1.1 V, 65 

nm, process worst CMOS technology. The dynamic power dissipation and leakage have 

been simulated onto the Standard Cell implementation of Microprogrammed Servo Se-

quencer in a 65 nm CMOS technology at 1.3V process best, getting in this way the power 

dissipation worst case.  

Microprogrammed Servo Sequencer area and timing outputs have been compared to RSS 

synthesis ones. The main results have been summarized in Table 5.5.9. The MSS is nine 

times bigger than RSS, the dynamic power dissipation is about two times higher whereas 

the leakage is approximately six times higher but, being MSS programmable, it is possi-

ble to change its behavior. 

 

Table 5.5.9  Synthesis results 

Device Library 

SYNTHESIS RESULTS 

Area 

[µm
2
] 

Dynamic power 

[mW] 

Leakage Power 

[µW] 

RSS 
HVT, SVT, LVT 

65nm 
4,2 x 103 1,4 232 

MSS (5.3) 
HVT, SVT, LVT 

65 nm 
36,7 x 103 3.24 1234 

 
 

In Table 5.5.10 Synthesis results details are shown: the combinational area is about 26 % 

of the MSS total area, the non combinational area is about the 12 % of MSS area and 

black boxes area (Intellectual Property single port RAM and dual port RAM) is about the 

63 % of the MSS total area. Microprogrammed Servo Sequencer area and timing outputs 

have been compared to RSS synthesis ones. 

 

Table 5.5.10  Synthesis results details 
 

Global Cell Area Local Cell Area 

Absolute 

Total 

[µm
2
] 

% 
Combinational 

[µm
2
] 

% 

Non  

combinational 

[µm
2
] 

% 

Black 

boxes 

[µm
2
] 

% 

36770 100 9390 ~25 4326 ~12 23055 ~63 

 
 

In case of longer firmware it is possible to extend the RAM single port from 512 to 16384 

words with few changing in the RTL code. For this particular Servo application 380 

firmware instructions are needed. However the Microprogrammed Servo Sequencer is pa-

rametric, so it is possible to reduce or to extend every instruction or register fields with 

simple RTL code changes. 
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6 Conclusion 

The Application Specific Instruction-set Processors has a great diffusion in different ap-

plications thanks to continuous increasing of chip density. This Ph. D. thesis presents an 

innovative approach for the realization of the Servo Subsystem of an Hard Disk Drive 

R/W channel. The Microprogrammed Servo Sequencer (MSS) designed implements a 

generic Servo Subsystem usually realized with an hardwired approach (a Finite State Ma-

chine). MSS is an Application Specific Instruction-set Processors: it is composed by an 

elaborating core, embedded counters, programmable I/O ports and a Reprogramming Fi-

nite State Machine; the MSS instruction set contains both generic both custom instruc-

tions dedicated to Servo operations. All the RTL source code that describes Micropro-

grammed Servo Sequencer is parametric so that it is possible to dimension part of Instruc-

tion Set fields to fit different Servo system features. Moreover the reprogramming process 

provides Microprogrammed Servo Sequencer behavior changing: after Integrated circuit 

fabrication it is possible to change its behavior by means of dedicated firmwares for dif-

ferent Servo System fitting. The Assertion Based Verification process supplies the MSS 

behavior improvement reducing functional bugs number before manufacturing process. 

This kind of approach can be used not only in Verification process, but also in Test phase. 

Moreover for every MSS versions needed to fit different Servo applications Assertion 

Based Verification can be reused to verify MSS behavior.  

The MSS is then reprogrammed with a dedicated firmware for the emulation of the Hard 

Disk Drive Servo read/write channel servo system; results on this real application prove 

that the Microprogrammed Servo Sequencer can operate like a Servo System. Synthesis 

results show that the MSS area is bigger than Servo System one, both dynamic and lea-

kage power dissipation is higher but, being MSS RTL source code parametric it is possi-

ble to change ISA dimensioning to fit new Servo system features; after that being MSS 

programmable it is possible to change its behavior after IC fabrication. 
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9 Appendixes 

9.1 Property Specification Language assertion 

PSL language comes from IMB Sugar language. It has been improved from Accelera and in 

2005 it became an IEEE standard. It is compatible with VHDL, Verilog, SystemC and Sys-

temVerilog. A methodology based on property definition has been defined. It has great verifi-

cation potentiality that allow to increment productivity and quality of electronics devices re-

ducing so time-to-market.  

An important feature of PSL language is the possibility of using temporal relation by means 

of SERE (Sequential Extended Regular Expressions): it is possible to control both the value 

of a signal in an instant both a signal temporal sequence evolution by means of automatic 

function defined in PSL. 

Properties can describe desirable device behavior and eventually (an assertion must be acti-

vated with an assert) check the device. 

PSL language has three different level: 

- Boolean: a functionality that has to be checked is defined by means of the control of 

signal and variable values present in the source code of the device. These functionali-

ties is described as properties evaluated during simulation. 

- Temporal: it is possible to evaluate device feature in different moment and to consider 

also signal temporal sequences. If these temporal checks were described in an HDL 

language they would lead to a waste of registers and complex logic. 

- Verification: this level informs simulation tools about directives such as properties that 

have to be checked. 

PSL assertions can be directly introduced in RTL source code as special comments: the word 

“psl” at the beginning of comment content permits to recognize assertions. For simulation 

tools these special comments are considered as assertions and elaborated to execute verifica-

tion process; instead synthesis tools don’t consider any of these comments to avoid the inser-

tion of non functionality features in the device netlist.  

The following examples explain PSL assertion and SERE use.  

The first example defines the property P1: it checks that READ and WRITE signals are never 

contemporary activated.  

 

  --  psl property P1 is never WRITE and READ;  

  --  psl assert P1; 
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In Figure 9.1.1 the assertion behavior is shown during simulation phase (considering positive 

logic).  

 

 

Figure 9.1.1  PSL P1 assertion example 

 

In Figure 9.1.2 a SERE PSL assertion activated at positive clock event is shown: when A and 

B signals is at high logic level in temporal sequence then C must becomes high in the next 

clock cycle and in the following clock cycle A, B and C are low level. 

 

 

 

In Figure 9.1.2 during simulation the assertion is activated three times: two successes and one 

failure.  

 

Figure 9.1.2  SERE PSL P2 assertion example 

  --  psl Default Clock is rising_edge(CLK); 

  --  psl property P2 is always { A ; B } |=> { C ; not (A or B or C) };  

  --  psl assert P2; 
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9.2 MSS Firmware  

# 
deafault_jump 009 
LAT_DC_PD 008 
SG_EN_1 000 
AZ_FOR_FSM 000 
PREAMBLE_CNT_EN 000 
PBL_FND_D 000 
PD_SAFE_LOST 000 
SAM_SRCH_STRT_D 000 
PREAMBLE_SAFE 000 
SMD_EXP_FLAG 000 
SMD_DET_FLAG 000 
SMD_QUAL_FLAG 000 
SPN_PGR_MAX 000 
SEQR_RRO_EXP2 000 
R_SVO_AZ_DIG 000 
ACB_FIR_LATENCY 007 
ACB_LATENCY 002 
SPN_PGR_MIN 006 
SPN_PGR_MAX 00a 
t0 000 
t1 000 
t2 000 
t3 000 
# 
SEQR_SG port_1 1 
PGR_READY port_1 2 
AZ_SEQ port_1 4 
DET_SVO_SMD port_1 8 
SVO_SMD_QL_OK port_1 16 
SVO_SMD_EXP port_1 32 
DET_GRAY_RDY port_1 64 
DET_RRO_VL1 port_2 1 
DET_RRO_VL2 port_2 2 
BRT_END port_2 4 
BRT_TRIGGER port_2 8 
RRW_END_WRITE port_2 16 
SPN_PBL_FOUND port_2 32 
SPN_DC_FOUND port_2 64 
SVO_SPI_SMD_FND port_3 1 
SVO_POL_KO port_3 2 
DET_SVOSMD_INV port_3 4 
ONE_EARLY_GC port_3 8 
ZONE_CHANGE port_3 16 
SCAN_MODE port_3 32 
INT_CNT_GEN port_4 126 
SEQR_LD_DATA port_out_1 1 
SEQ_CODE_EN port_out_1 2 
SEQR_ITR_ON port_out_1 4 
SEQR_BRT_START port_out_1 8 
RST_INTF port_out_1 16 
SEQ_OK_INTF port_out_1 32 

SEQ_UPD_PARAM port_out_1 64 
SEQR_CKEN_SVO port_out_2 1 
SEQR_RST_LOOPS port_out_2 2 
INT_SAM_SRC port_out_2 4 
SG_EN port_out_2 8 
SVO_AZ_DIG port_out_2 16 
SEQR_LD_LOOPS port_out_2 64 
SEQR_RRO_EXP1 port_out_3 1 
SEQR_AGC_EN port_out_3 2 
SEQ_ID_RRO port_out_3 4 
SEQR_PGR_SRST port_out_3 8 
SEQR_PGR_START  port_out_3 16 
SEQ_UPDATE_LOOP port_out_3 32 
SEQR_UPD_GLS port_out_3 64 
SEQR_FL_SG port_out_4 1 
INTF_ITR_CODE port_out_1 22 
UPD_OK_BRT_ITR port_out_1 108 
ITR_CODE port_out_1 6 
ITR_LD port_out_1 5 
UPD_OK_BRT port_out_1 104 
START_SRST_AGC port_out_3 26 
START_SRST port_out_3 24 
UPDATE_SRST port_out_3 40 
UPDATE_SRST_AGC port_out_3 48 
START_RRO port_out_3 17 
UPD_START port_out_3 80 
SEQ_SEARCH_1 port_SPI_1 1 
SPI_SVO_DC_EN port_SPI_1 2 
SPI_PGR_IN_SEL port_SPI_1 4 
SPI_PGR_WIN_SEL port_SPI_1 8 
SPI_SVO_PD_SAFE port_SPI_1 112 
SPI_SVO_AZ_PGR port_SPI_2 3 
SPI_SVO_LATENCY port_SPI_2 30 
SPI_RRO_STP_QBAD port_SPI_2 64 
SPI_AZ_DIG port_SPI_3 1 
SPI_SVO_AZ_EN port_SPI_3 2 
SPI_SG_IGNORE port_SPI_3 4 
SVO_RRO_MD port_SPI_3 24 
INT_CNT_GEN_end port_in_SPECIAL_1 3 
SAM_SRCH_STRT port_in_SPECIAL_1 4 
END_GC port_in_SPECIAL_1 8 
RD_RRO port_in_SPECIAL_1 16 
RRO1_CNT_END port_in_SPECIAL_1 32 
RRO2_CNT_END port_in_SPECIAL_1 64 
RD_2RRO port_in_SPECIAL_2 1 
WR_RRO port_in_SPECIAL_2 2 
ANALOG_AZ_RSY port_in_SPECIAL_2 12 
ACQ_COUNT_EN port_in_SPECIAL_2 16 
SEQ_NSVO_MINIWB port_in_SPECIAL_2 
32 
SEQR_SG_SYNC port_in_SPECIAL_2 64 
# 
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IDLE 
       NMI SEQR_SG 1 
       COMPI SPI_PGR_IN_SEL 1 
       JUMPCS STATE_ACB_FIR_LATENCY 
       ADD SPI_SVO_LATENCY 
ACB_LATENCY 
       ADD Acc SPI_SVO_AZ_PGR 
       COUNTER INT_CNT_GEN Acc 
       JUMP IDLE_2 
STATE_ACB_FIR_LATENCY 
       ADD SPI_SVO_LATENCY 
ACB_FIR_LATENCY 
       ADD Acc SPI_SVO_AZ_PGR 
       COUNTER INT_CNT_GEN Acc 
IDLE_2 
       SLL SEQR_SG  1 
       OR Acc SEQR_SG 
       COMPNI Acc 3 
       JUMPCS IDLE 
       COMPI SPI_SG_IGNORE 1 
       JUMPCS IDLE 
       SET_V SG_EN 1 
SVO_SG1 
       NOT ZONE_CHANGE 
       SET  SEQR_CKEN_SVO Acc 
       COMPNI SEQR_SG 1 
       JUMPCS IDLE 
SVO_SG2 
       NOT ZONE_CHANGE 
       SET  SEQR_CKEN_SVO Acc 
       SET_V SEQR_LD_LOOPS 1 
       COMPI SEQR_SG 0 
       JUMPCS SVO_SG_END 
       SET SVO_AZ_DIG R_SVO_AZ_DIG 
       COMPI R_SVO_AZ_DIG 0 
       JUMPCS STATE_AZ_SEQ 
       SET AZ_FOR_FSM AZ_SEQ 
       JUMP STATE_AZ_FOR_FSM 
STATE_AZ_SEQ 
        AND SPI_SVO_AZ_EN ANA-
LOG_AZ_RSY 
        SET AZ_FOR_FSM Acc 
STATE_AZ_FOR_FSM 
        COMPI AZ_FOR_FSM 1 
        JUMPCS AZ_WIN 
        COMPNI SEQ_NSVO_MINIWB  1 
        JUMPCS WAIT_INPUT_MWG 
WAIT_INPUT 
       COUNTER INT_CNT_GEN 126 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
WAIT_INPUT2 
       NMI SEQR_SG_SYNC 0 
       JUMPCS SVO_SG_END 
       NMI INT_CNT_GEN_end 2 

       CONCAT SEQ_SEARCH_1 
SPI_SVO_DC_EN 
       COMPI Acc 3 
       JUMPCS DC_ERASE_SRCH 
       CONCAT SEQ_SEARCH_1 
SPI_SVO_DC_EN 
       COMPI Acc 2 
       JUMPCS PRBL_SRCH 
       SET_V SEQR_PGR_START 1 
PGR_DATA_PRMBL 
       NOT  ZONE_CHANGE 
       SET  SEQR_CKEN_SVO Acc 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG 
       NMI PGR_READY 1 
       SET_V INTF_ITR_CODE 7 
WAIT_SAM_SRCH 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V INT_SAM_SRC 1 
       NMI SAM_SRCH_STRT 1 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG 
SAM_SRCH 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       NOT SEQ_SEARCH_1 
       COMPI Acc 0 
       JUMPCS STATE_SVO_POL 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG 
       NMI DET_SVO_SMD  1 
       AND  DET_SVOSMD_INV 
SVO_POL_KO 
       OR Acc DET_SVO_SMD 
       COMPI Acc 0 
       JUMPCS SAM_SRCH 
GC_DET 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG 
       COMPI SVO_POL_KO 1 
       JUMPCS STATE_END_GC_1 
     JUMP STATE_END_GC_0 
STATE_END_GC_1 
       COMPI ONE_EARLY_GC 0 
       JUMPCS GC_DET 
       JUMP STATE_END_GC_3 
STATE_END_GC_0 
       NMI DET_GRAY_RDY 1 
       COMPI DET_GRAY_RDY 0 
       JUMPCS GC_DET 
STATE_END_GC_3 
       SET_V UPD_OK_BRT_ITR 14 
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BRST_DEM 
       NOT  ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
WAIT_TRIGGER 
       NMI BRT_TRIGGER 1 
       SET_V SEQR_LD_DATA 0 
       JUMP BRST_DEM_2 
STATE_LD_DATA 
       SET_V SEQR_LD_DATA 0 
BRST_DEM_2 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG_A 
WAIT_RRO1_BRT 
       CONCAT BRT_END RRO1_CNT_END 
       COMPI Acc 3 
       JUMPCS WAIT_RRO1_BRT2 
       CONCAT BRT_END RRO1_CNT_END 
       COMPI Acc 1 
       JUMPCS PGR_RRO1_A 
       CONCAT BRT_END RRO1_CNT_END 
       COMPI Acc 2 
       JUMPCS WAIT_RRO1_CLOSE 
       JUMP WAIT_RRO1_BRT 
WAIT_RRO1_BRT2 
       SET_V SEQR_UPD_GLS 1 
       COMPI RD_RRO 0 
       JUMPCS CLOSE_SG 
       SET_V SEQR_LD_DATA 0 
       SET_V SEQR_PGR_START 1 
       JUMP PGR_RRO1 
WAIT_RRO1_CLOSE 
       SET_V SEQR_UPD_GLS 1 
       SET_V SEQR_LD_DATA 0 
       COMPI RD_RRO 0 
       JUMPCS CLOSE_SG 
WAIT_RRO1 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_LD_DATA 0 
       NMI RRO1_CNT_END 1 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG_B 
       SET_V SEQR_PGR_START 1 
PGR_RRO1 
       NOT  ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_LD_DATA 0 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG_B 
       NMI PGR_READY 1 
       SET_V ITR_CODE 3 
DATA_RRO1 
       NOT  ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V ITR_LD 1 

DATA_RRO1_A 
       CONCAT DET_RRO_VL1 
SEQR_SG_SYNC 
       COMPI Acc 3 
       JUMPCS STATERRO2_CNT_END 
       CONCAT DET_RRO_VL1 
SEQR_SG_SYNC 
       COMPI Acc 2 
       JUMPCS CLOSE_SG_C 
       CONCAT DET_RRO_VL1 
SEQR_SG_SYNC 
       COMPI Acc 1 
       JUMPCS DATA_PGR_RRO1_2 
       CONCAT DET_RRO_VL1 
SEQR_SG_SYNC 
       COMPI Acc 0 
       JUMPCS CLOSE_SG_B 
STATERRO2_CNT_END 
       COMPI RRO2_CNT_END 0 
       JUMPCS WAIT_CLOSE_RRO2 
       COMPI RD_2RRO 0 
       JUMPCS CLOSE_SG 
       SET_V SEQR_PGR_START 1 
       JUMP PGR_RRO2 
WAIT_CLOSE_RRO2 
       COMPNI RD_2RRO 1 
       JUMPCS CLOSE_SG 
WAIT_RRO2 
       NOT  ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_LD_DATA 0 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG_D 
       COMPI RRO2_CNT_END 0 
       JUMPCS WAIT_RRO2 
       SET_V SEQR_PGR_START 1 
PGR_RRO2 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_LD_DATA 0 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG_D 
       COMPI PGR_READY 0 
       JUMPCS PGR_RRO2 
       SET_V ITR_CODE 3 
DATA_RRO2 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V ITR_LD 1 
       SET_V SEQ_ID_RRO 1 
       NMI  SEQR_SG_SYNC  0 
       JUMPCS DATA_RRO2 
       COMPI DET_RRO_VL2 0 
       JUMPCS CLOSE_SG_D 
CLOSE_SG 
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       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_RST_LOOPS 1 
       COMPI WR_RRO 0 
       JUMPCS CLOSE_SG_SEC 
       NOT  SVO_SMD_QL_OK 
       AND Acc SPI_RRO_STP_QBAD 
       STORE t0 
       NOT SEQR_SG_SYNC 
       AND Acc t0 
       OR Acc RRW_END_WRITE 
       STORE t0 
       NOT  SVO_SPI_SMD_FND 
       OR Acc t0 
       STORE t0 
       CONCAT SEQR_SG 
SEQ_NSVO_MINIWB 
       CONCAT Acc t0 
       COMPI Acc 2 
       JUMPCS CLOSE_SG 
SVO_SG_END 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_FL_SG 1 
SVO_SG3 
       SET_V SEQR_LD_DATA 0 
SVO_SG4 
       SET_V SEQR_LD_DATA 0 
       JUMP IDLE 
CLOSE_SG_SEC 
       NMI SEQR_SG_SYNC  0 
       JUMPCS CLOSE_SG 
       JUMP SVO_SG_END 
DATA_PGR_RRO1_2 
       COMPI RRO2_CNT_END  0 
       JUMPCS DATA_RRO1 
       SET_V SEQR_RRO_EXP1 1 
       SET_V SEQR_PGR_START 1 
       JUMP PGR_RRO2 
PGR_RRO1_A 
       SET_V SEQR_UPD_GLS 1 
       SET_V SEQR_PGR_START 1 
       JUMP PGR_RRO1 
CLOSE_SG_A 
       SET SEQR_RRO_EXP1 RD_RRO 
       SET SEQR_RRO_EXP2 RD_2RRO 
CLOSE_SG_E 
       SET_V SEQR_UPD_GLS 1 
       JUMP CLOSE_SG 
CLOSE_SG_B 
       SET_V SEQR_RRO_EXP1 1 
CLOSE_SG_C 
       SET SEQR_RRO_EXP2 RD_2RRO 
       JUMP CLOSE_SG 
CLOSE_SG_D 

       SET_V SEQR_RRO_EXP2 1 
       JUMP CLOSE_SG 
AZ_WIN 
       SET_V SEQR_LD_LOOPS 1 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       COMPI SEQR_SG 0 
       JUMPCS SVO_SG_END 
       COMPI AZ_FOR_FSM 1 
       JUMPCS AZ_WIN 
       NOT SEQ_NSVO_MINIWB 
       COMPI Acc 0 
       JUMPCS WAIT_INPUT 
WAIT_INPUT_MWG 
       COUNTER INT_CNT_GEN 126 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       NMI SEQR_SG_SYNC 0 
       JUMPCS SVO_SG_END 
       NMI INT_CNT_GEN_end 2 
       COMPI INT_CNT_GEN_end 0 
       JUMPCS WAIT_INPUT_MWG 
       SET_V SEQR_PGR_START 1 
PGR_MWEDGE 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       NMI SEQR_SG_SYNC 0 
       JUMPCS SVO_SG_END 
       COMPI PGR_READY 0 
       JUMPCS PGR_MWEDGE 
       SET_V INTF_ITR_CODE 7 
SAM_MWEDGE 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_ITR_ON 1 
       NMI SEQR_SG_SYNC 0 
       JUMPCS CLOSE_SG 
       COMPI DET_SVO_SMD 0 
       JUMPCS SAM_MWEDGE 
       SET_V UPD_OK_BRT_ITR 14 
BRST_MWEDGE 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       CONCAT  BRT_END SEQR_SG_SYNC 
       COMPI Acc 1 
       JUMPCS BRST_MWEDGE 
       JUMP CLOSE_SG_E 
PRBL_SRCH 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_AGC_EN 1 
       COMPI SEQR_SG_SYNC 0 
       JUMPCS PGR_END 
       COMPI SPN_PBL_FOUND 0 
       JUMPCS PRBL_PGR 
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       SET_V SEQR_PGR_START 1 
       SET SEQ_UPDATE_LOOP 
ACQ_COUNT_EN 
       COMPI SPI_PGR_WIN_SEL 1 
       JUMPCS STATE_CNT_SPN 
       COUNTER INT_CNT_GEN 
SPN_PGR_MIN 
       JUMP PGR_SPN_CHK 
DC_ERASE_SRCH 
       COUNTER INT_CNT_GEN 
LAT_DC_PD 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET t0 LAT_DC_PD 
       SET_V START_SRST_AGC 1 
       NMI SEQR_SG_SYNC 0 
       JUMPCS SVO_SG_END 
       COMPI SPN_DC_FOUND 0 
       JUMPCS DC_ERASE_SRCH 
WAIT_DC_PD 
       COUNTER INT_CNT_WT 126 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_AGC_EN 1 
       NMI SEQR_SG_SYNC 0 
       JUMPCS PGR_END 
       NMI INT_CNT_GEN_end 1 
       COMPI INT_CNT_GEN_end 0 
       JUMPCS DC_PD_PGR 
       COMPI SPN_PBL_FOUND 1 
       JUMPCS STATE_PGR_SPN_CHK 
       SET_V SEQR_PGR_SRST 0 
       JUMP DC_ERASE_SRCH 
DC_PD_PGR 
       SET_V SEQR_PGR_SRST 0 
       JUMP WAIT_DC_PD 
STATE_PGR_SPN_CHK 
       SET_V START_SRST 3 
       COMPI SPI_PGR_WIN_SEL 1 
       JUMPCS STATE_CNT_SPN 
       COUNTER INT_CNT_GEN 
SPN_PGR_MIN 
PGR_SPN_CHK 
       COUNTER INT_CNT_GEN 126 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_AGC_EN 1 
       NMI SEQR_SG_SYNC  0 
       JUMPCS PGR_CLOSE_SG 
       COMPI PGR_READY 1 
       JUMPCS UPDATE_LOOP 
       NMI INT_CNT_GEN_end 1 
       CONCAT PBL_FND_D 
INT_CNT_GEN_end 
       COMPI Acc 0 

       JUMPCS NO_UPDATE_LOOP 
       SET t0 INT_CNT_GEN 
       CONCAT PBL_FND_D 
INT_CNT_GEN_end 
       COMPI Acc 6 
       JUMPCS STATE_FF 
       JUMP PGR_SPN_CHK 
PGR_CLOSE_SG 
       SET_V SEQR_PGR_SRST 0 
       JUMP CLOSE_SG 
UPDATE_LOOP 
       CONCAT PBL_FND_D 
INT_CNT_GEN_end 
       COMPI Acc 6 
       JUMPCS STATE_WT_SAM_SRCH 
       SET_V SEQ_UPDATE_LOOP 1 
NO_UPDATE_LOOP 
       SET_V SEQR_PGR_SRST 0 
       COMPI SPI_SVO_DC_EN 1 
       JUMPCS DC_ERASE_SRCH 
       NOP 1 
       JUMP PRBL_SRCH 
STATE_FF 
       COUNTER INT_CNT_GEN t0 
       JUMP PGR_SPN_CHK 
STATE_WT_SAM_SRCH 
       SET_V INTF_ITR_CODE 7 
       SLL SPI_SVO_PD_SAFE 3 
       COUNTER INT_CNT_GEN Acc 
       SET_V PREAMBLE_CNT_EN 1 
WT_SAM_SRCH_SPN 
       COUNTER INT_CNT_GEN 126 
       NOT ZONE_CHANGE 
       SET SEQR_CKEN_SVO Acc 
       SET_V SEQR_ITR_ON 1 
       SET_V SEQR_AGC_EN 1 
       NMI SEQR_SG_SYNC  0 
       JUMPCS CLOSE_SG 
       COMPI PD_SAFE_LOST 0 
       JUMPCS STATE_PD_SAFE 
STATE_DEFAULT_PD_SAFE 
       SET_V UPDATE_SRST 2 
       COMPI SPI_SVO_DC_EN 1 
       JUMPCS DC_ERASE_SRCH 
       NOP 1 
       JUMP PRBL_SRCH 
STATE_PD_SAFE 
       CONCAT SAM_SRCH_STRT_D 
PREAMBLE_SAFE 
       COMPI Acc 3 
       JUMPCS CNT_SAM 
       CONCAT SAM_SRCH_STRT_D 
PREAMBLE_SAFE 
       COMPI Acc 2 
       JUMPCS STATE_DEFAULT_PD_SAFE 
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       SET_V PREAMBLE_CNT_EN 1 
       JUMP WT_SAM_SRCH_SPN 
CNT_SAM 
       SET_V PREAMBLE_CNT_EN 0 
       JUMP SAM_SRCH 
STATE_SVO_POL 
       COMPI SVO_POL_KO 1 
       JUMPCS CLOSE_SG 
       COMPI SMD_EXP_FLAG 0 
       JUMPCS STATE_SAM_GC 
       SET_V UPDATE_SRST_AGC 5 
       COMPI SPI_SVO_DC_EN 1 
       JUMPCS DC_ERASE_SRCH 
       NOP 1 
       JUMP PRBL_SRCH 
STATE_SAM_GC 
       CONCAT SMD_DET_FLAG 

SMD_QUAL_FLAG 
       COMPI Acc 3 
       JUMPCS GC_DET 
       SET_V SEQR_AGC_EN 1 
       JUMP SAM_SRCH 
PGR_END 
       SET_V SEQR_PGR_SRST 0 
       JUMP SVO_SG_END 
PRBL_PGR 
       SET_V SEQR_PGR_SRST 0 
       JUMP PRBL_SRCH 
STATE_CNT_SPN 
       COUNTER INT_CNT_GEN 
SPN_PGR_MAX 
       JUMP PGR_SPN_CHK 
# 

 


